Adaptations in human neuromuscular function following prolonged unweighting: I. Skeletal muscle contractile properties and applied ischemia efficacy.
نویسندگان
چکیده
Strength loss following disuse may result from alterations in muscle and/or neurological properties. In this paper, we report our findings on human plantar flexor muscle properties following 4 wk of limb suspension (unilateral lower limb suspension), along with the effect of applied ischemia (Isc) on these properties. In the companion paper (Part II), we report our findings on the changes in neurological properties. Measurements of voluntary and evoked forces, the compound muscle fiber action potential (CMAP), and muscle cross-sectional area (CSA) were collected before and after 4 wk of unilateral lower limb suspension in adults (n = 18; 19-28 yr). A subset of subjects (n = 6) received applications of Isc 3 days/wk (3 sets; 5-min duration). In the subjects not receiving Isc, the loss in CSA and strength was as expected ( approximately 9 and 14%). We observed a 30% slowing in the duration of the CMAP, a 10% decrease in evoked doublet force, a 12% increase in the twitch-to-doublet force ratio, and an altered postactivation potentiation response (11% increase in the postactivation potentiation-to-doublet ratio). We also detected a 10% slowing in the ability of the plantar flexor to develop force during the initial phase of an evoked contraction, along with a 6% reduction in in vivo specific doublet force. In the Isc subjects, no preservation was observed in strength or the evoked muscle properties. However, the Isc group did maintain CSA of the lateral gastrocnemius, as the control subjects' lateral gastrocnemius atrophied 10.2%, whereas the subjects receiving Isc atrophied 4.7%. Additionally, Isc abolished the unweighting-induced slowing in the CMAP. These findings suggest that unweighting alters the contractile properties involved in the excitation-contraction coupling processes and that Isc impacts the sarcolemma.
منابع مشابه
Adaptations in human neuromuscular function following prolonged unweighting: II. Neurological properties and motor imagery efficacy.
Strength loss following disuse may result from alterations in muscle and/or neurological properties. In this paper, we report our findings on human plantar flexor neurological properties following 4 wk of limb suspension [unilateral lower limb suspension (ULLS)], along with the effect of motor imagery (MI) training on these properties. In the companion paper (Part I), we report our findings on ...
متن کاملNeuromuscular plasticity during and following 3 wk of human forearm cast immobilization.
Prolonged reductions in muscle activity results in alterations in neuromuscular properties; however, the time course of adaptations is not fully understood, and many of the specific adaptations have not been identified. This study evaluated the temporal evolution of adaptations in neuromuscular properties during and following 3 wk of immobilization. We utilized a combination of techniques invol...
متن کاملContractile function of single muscle fibers after hindlimb unweighting in aged rats.
This investigation determined how muscle atrophy produced by hindlimb unweighting (HU) alters the contractile function of single muscle fibers from older animals (30 mo). After 1 wk of HU, small bundles of fibers were isolated from the soleus muscles and the deep region of the lateral head of the gastrocnemius muscles. Single glycerinated fibers were suspended between a motor lever and force tr...
متن کاملAtrophy of the soleus muscle by hindlimb unweighting.
The unweighting model is a unique whole animal model that will permit the future delineation of the mechanism(s) by which gravity maintains contractile mass in postural (slow-twitch) skeletal muscle. Since the origination of the model of rodent hindlimb unweighting almost one decade ago, about half of the 59 refereed articles in which this model was utilized have been published in the Journal o...
متن کاملSkeletal muscle unweighting: spaceflight and ground-based models.
Long-term manned spaceflight requires that flight crews be exposed to extended periods of unweighting of antigravity skeletal muscles. This exposure will result in adaptations in these muscles that have the potential to debilitate crew members on return to increased gravity environments. Therefore, the development of countermeasures to prevent these unwanted adaptations is an important requirem...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 101 1 شماره
صفحات -
تاریخ انتشار 2006